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Abstract
Decoherence phenomena in a small quantum system coupled to a complex
environment can be modelled with random matrices. We propose a simple
deterministic model in the limit of a high dimensional environment. The
model is investigated numerically and some analytically addressable questions
are singled out.

PACS numbers: 03.65.Yz, 03.67.La

1. Introduction

Systems like single ultra-cold atoms, well-isolated from the outside world, are often modelled
by the spin-boson model [1]. Due to the low temperature only the ground state and the first few
excited states are relevant, the atom is therefore essentially a spin. Even if the atom is trapped
in a region of high vacuum there is still the unavoidable interaction with the surrounding
radiation field, this is the boson part of the model. Moreover, the radiation field is assumed to
be thermal at a low temperature.

A different type of situation arises when our distinguished quantum system is no longer
trapped in a region of high vacuum but is embedded within a solid [2]. If the system only
weakly interacts with neighbouring atoms or molecules, we might imagine that its environment
consists of a multi-level system of rather unknown structure interacting weakly with our
distinguished spin. The precise interaction is difficult to know and details may vary from
sample to sample. Following the approach of Wigner with the spectral lines of large nuclei
[3], we arrive at a model of a spin randomly coupled to a large system the proper dynamics of
which is also random.

The simplest example of such a model is that of a qubit coupled to a random environment.
Both the coupling and the own dynamics of the environment are drawn from the Gaussian
unitary ensemble (GUE). A further simplification is to make the environment infinite. This
can be done in a mathematically consistent way by properly scaling the variances of the
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random matrices with their dimension. The resulting structure is quite appealing and goes
under the name of free probability [4, 5]. We briefly present a simple model in this vein but
postpone its analysis to a forthcoming paper. The aim of this paper is to investigate the model
by numerical simulations and to single out in this way a number of questions that can be
addressed analytically.

The Hamiltonian governing the dynamics of the coupled system, qubit and environment,
has the following form:

h =
(

ε + x λy

λy x

)
. (1)

The gap between the ground and excited state of the qubit is ε and λ is the strength of the
coupling with the environment. Furthermore, x and y are Hermitian environment operators
describing the proper dynamics of the environment and the nature of its coupling with the
qubit.

Initially, the qubit is assumed to be completely decoupled from the environment and
described by a density matrix

ρ0 =
(

ρ11 ρ12

ρ21 ρ22

)

with

ρ11 � 0, ρ11 + ρ22 = 1, ρ21 = ρ12 and |ρ12|2 � ρ11ρ22.

Equivalently

ρ0 = 1
2 (1 + r0 · σ)

where σ are the Pauli matrices and r0 is the three-dimensional Bloch vector corresponding to
ρ0

r0 = (2 Re(ρ12),−2 Im(ρ12), 2ρ11 − 1).

The reduced dynamics of the qubit is given by

t �→ 〈tr(ρ0u(t)σu(t)†)〉. (2)

In this formula u(t) is the global Hamiltonian dynamics exp(−ith), we put h̄ = 1, and 〈 〉 is
the average over the environment.

It remains to specify the nature of the environment observables x and y. Unlike the classical
case, where [x, y] = 0, or the case of position and momentum fields, where [x, y] = −i, there
is no commutation relation between x and y which allows us to simplify monomials. The
only rules that can be applied are of the type xmxn = xm+n. The term ‘free’ coins this lack of
simplification rules.

In order to compute the expectation of an arbitrary polynomial in x and y we need to
know the mixed moments of x and y

〈xm1yn1xm2 · · · ynk 〉.
The second ingredient in the structure of the environment is independence which determines
the expectations of arbitrary monomials in x and y in terms of expectations of powers of x and
y alone. This is expressed by saying that x and y are in free relation. It amounts to impose
that

〈(xm1 − 〈xm1〉)(yn1 − 〈yn1〉) · · · (ynk − 〈ynk 〉)〉 = 0 (3)
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which allows us to recursively compute all mixed moments in terms of the moments of x and
y. For example,

〈xyxy〉 = 〈x2〉〈y〉2 + 〈x〉2〈y2〉 − 〈x〉2〈y〉2.

A further natural choice is to take x and y standard semi-circularly distributed, this is the
analogue of the standard normal distribution in usual probability theory

〈x2n+1〉 = 〈y2n+1〉 = 0 and 〈x2n〉 = 〈y2n〉 =
( 2n

n

)
n + 1

= cn, (4)

where cn’s are the Catalan numbers.
An important result in free probability, which has been vastly extended, is that freeness

with the standard semi-circular distribution of (4) arises in the limit of large random matrices
[4, 5]. Wigner showed that the eigenvalue distribution of Gaussian random matrices of
dimension d asymptotically tends to a standard semi-circle (4) when the variances of the
independent and identically distributed matrix entries are chosen as 1/

√
d (real Gaussian

random variables on the diagonal and complex ones in the upper triangle). The mixed
moments of n-tuples of such random matrices, computed with respect to the normalized trace,
have been shown to satisfy the freeness relation (3) in the limit d → ∞. It is our aim here to
numerically analyse the reduced dynamics (2) in terms of the dimension of the environment
and the control parameters ε and λ and to single out a number of questions that could be
addressed analytically.

2. The basic model

In order to distinguish between the abstract freely independent elements x, y, . . . of the
introduction which are semi-circularly distributed and their finite-dimensional random
approximants, we shall use upper case symbols X, Y, . . . to denote the latter.

Drawing random Hermitian matrices X and Y from the d-dimensional GUE with unit
variance, we obtain a random Hamiltonian

H =
(

ε + X λY

λY X

)

corresponding to (1).
Instead of considering the reduced dynamics (2), we shall use the interaction picture and

consider

t �→ 〈
tr

(
ρ0U

†
0(t)U(t)σU(t)†U0(t)

)〉 =: tr ρ(t)σ . (5)

where U0(t) := exp(−itH0) is the free dynamics of the uncoupled system

H0 :=
(

ε + X 0
0 X

)
.

The full dynamics U(t) is exp(−itH). As both H and H0 have discrete eigenvalues, the
expectation values (5) are almost periodic in time and one cannot expect some definite limiting
behaviour. The revival time depends on the details of the spectrum of the Hamiltonian which
consists of a regular part with some superimposed fluctuations. The analysis of the energy
level separation as a function of the system size is one of the central questions quantum chaos
is concerned with and will not be considered in this paper, see however [6, 7]. In our case, the
revival time appears however to increase drastically with the dimension.
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Figure 1. Five realizations of the reduced density.

In [8], the behaviour of the reduced dynamics was considered from a different point
of view. The normalized trace over the environment was replaced by the micro canonical
ensemble determined by the free Hamiltonian of the environment and the average over the
GUE was considered with respect to Y. Several scaling limits were considered.

2.1. Deterministic dynamics

A number of observations emerge from our numerical evidence. The reduced density matrices
ρ(t) clearly depend on the initial condition ρ0, on the parameters ε and λ and also on the
d-dimensional matrices X and Y. A striking observation is that for sufficiently large dimensions
and keeping all other parameters fixed, the reduced density matrix becomes almost independent
of the specific realization of the random X and Y.

In figure 1, we plotted the evolution up to time 100 of the (22) entry of the reduced density
for five realizations of the random matrices X and Y. The dimension of the environment is
30, ε = 1 and λ = 0.2. The solid line is the average. Obviously, for such a low dimension
of the environment, the evolution of the reduced density matrix still strongly depends on the
realization of the random X and Y.

In figure 2, the averaged variance of five realizations of the (22) entry of the reduced
density matrix with respect to their average over 100 time steps is plotted as a function of
the dimension. Initially the qubit is in its ground state, ε = 1 and λ = 0.2. In figure 3,
the estimated long time limit over five realizations is plotted versus the dimension of the
environment. Finally, in figure 4 the variance of the estimated limit versus dimension is
plotted.

From now on we shall consider a sufficiently high dimension of the environment so that
we can assume that a typical realization of the randomness generates the probability one
behaviour of the limit d → ∞. As free probability is the limit of large random matrices
the deterministic behaviour of the reduced density matrix is the model with free independent
observables x and y that was sketched in the introduction. Convincing evidence for this is given
by the perturbative computation of the reduced density matrix in the free model. To achieve
this we use the Dyson expansion in the interaction picture. Decomposing the Hamiltonian
into a free and a perturbed part

h = h0 + λp



Qubits in a random environment 8073

d
20 40 60 80 100

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Var

Figure 2. Averaged variance as a function of the dimension.
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Figure 3. Long time limit as a function of the dimension.

d
20 40 60 80 100

0.0005

0.0010

0.0015

0.0020

Var

Figure 4. Variance of the estimated limit as a function of the dimension.

we have for an observable a of the total system

u
†
0(t)u(t)au†(t)u0(t) = a + (iλ)

∫ t

0
ds1

[
pt−s1 , a

]
+ · · ·

+ (iλ)n
∫ t

0
ds1

∫ s1

0
ds2· · ·

∫ sn−1

0
dsn

[
pt−s1 ,

[
ps1−s2 , . . .

[
psn−1−sn

, a
]
. . .

]]
+ · · · .

Here pt is the freely evolved perturbation at time t.
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Figure 5. Dyson expansion (thin line) versus simulated evolution (thick line).

We now apply the Dyson expansion to the computation of the reduced density matrix.
Using the rules (3) of freeness and the semicircular distribution of x and y, we can expand the
reduced density matrix in orders of λ. Because of symmetry reasons only terms of even order
will contribute. The final expression can be written in terms of integrals of moments of y and
of expectations of exp(isx). This last expression is the characteristic function of a standard
semi-circular random variable

〈exp(isx)〉 = 1

2π

∫ 2

−2
dζ

√
4 − ζ 2eisζ = J1(2s)

s
.

Setting the initial state equal to the ground state of the qubit, a rather tedious computation
leads to the following expectation for (1 − σ z)/2, i.e. the (22) component of the reduced
density matrix,

1 − 2λ2
∫ t

0
dx(t − x)

cos(εx)J2
1(2x)

x2
+

4

3
λ4

∫ t

0
dx1

∫ t

0
dx2(t − x1)(t − x2)

×
{

cos(ε(x1 − x2))
J2

1(2x1)J2
1(2x2)J2

1(2(x1 − x2))

x2
1x

2
2(x1 − x2)2

+ cos(ε(x1 + x2))

× J2
1(2x1)J2

1(2x2)J2
1(2(x1 + x2))

x2
1x

2
2(x1 + x2)2

}
+ O(λ6).

The next order is still analytically computable, the obtained expression is however rather
involved.

In figure 5, we plot the evolution of the (22) entry according to the Dyson expansion
truncated at order 6 versus an evolution obtained by numerical simulation considering an
environment of dimension 100. The parameters are ε = 1 and λ = 1.

2.2. The asymptotic regime

Another observation that emerges from the numerics is that the reduced density matrix rapidly
seems to tend to a limit when t becomes large. Of course, due to the finite dimensions, there is
a revival time and there is certainly no limiting behaviour with respect to time. However if we
first take the limit d → ∞ we can certainly expect a definite long-term behaviour of the basic
deterministic model introduced in (1), i.e. the infinite random environment drives the qubit to
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Figure 6. Evolution of off-diagonal entry.

a final state ρ∞ which obviously depends on the initial condition ρ0 and on the parameters ε

and λ.
Let us choose ε > 0 and compute the reduced functional obtained from an initial condition(

a11 a12

a21 a22

)
�→ a12 = tr

(
0 0
1 0

)(
a11 a12

a21 a22

)
.

This initial condition is not a qubit expectation but we can formally compute its reduced
evolution. It turns out that it converges to zero. In figure 6, the absolute value of the off-
diagonal matrix entry of the reduced functional is shown for a single realization in dimension
100, ε = 1 and λ = 0.2.

Let us now assume that initially the qubit is in a state possibly mixed but reasonably close
to the ground state. We decompose this state as(

ρ11 ρ12

ρ21 ρ22

)
= (1 − 2ρ11)

(
0 0
0 1

)
+ 2ρ11

(
1/2 0
0 1/2

)
+ ρ12

(
0 1
0 0

)
+ ρ21

(
0 0
1 0

)
.

By linearity, the reduced density matrix will decompose in the same way. In the limit t → ∞,
the contributions of the last two terms vanish as discussed above. Moreover, the second term
is constant in time. We restrict therefore from now on our attention to the ground state of the
qubit as initial condition.

It is clear from the simulations that the asymptotic reduced state is diagonal in the σ z

eigenbasis: it is a mixture of the ground and the excited state of the qubit. Also the dependence
of the limit on the parameters ε and λ is easily understood from an intuitive point of view. A
large ε means a large energy gap between the ground and excited state of the qubit. It is rather
unlikely that the environment will induce frequent jumps to the excited state and therefore we
may expect a rather high proportion of ground state in the long run. It appears in fact from the
simulations that

lim
ε→∞ ρ(∞)22 = 1.

Another, rather unphysical, regime is attained when λ is quite large. In this case, the
environment rapidly decoheres the qubit and for symmetry reasons one expects to obtain
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Figure 7. The limiting state as a function of ε and λ.

(This figure is in colour only in the electronic version)

an equal mix of ground and excited state, i.e. the normalized trace on the qubit. Indeed,

lim
λ→∞

ρ(∞)22 = 1
2 .

In figure 7, we plot the asymptotic value of the (22) entry of the reduced density matrix.
The initial state of the qubit is set to the ground state.

These two behaviours point at a discontinuity of the limiting density when both ε and λ

are small. In fact, an interesting behaviour seems to emerge when both ε and λ tend to zero in
such a way that ε/λ tends to some value γ � 0.

Another limiting situation is obtained for both ε and λ large. In this limit, x becomes
negligible and we obtain a model of the type

h =
(

ε y

y 0

)
.

This model is essentially classical and can be solved explicitly. The obtained expressions are
rather complicated but simplify when t → ∞ to

ρ(∞) = 1

16

(
8 + ε2 − ε

√
16 + ε2 0

0 8 − ε2 + ε
√

16 + ε2

)
. (6)

As before, the initial state is the ground state of the qubit.
In figure 8, we show the estimated asymptotic (22) entry of the reduced density matrix

for a d = 100 versus the gap of the qubit. Initially, the qubit is in its ground state and the
continuous line is the analytical expression (6).

The case ε = 0 and λ > 0 corresponds to yet another model that can be solved analytically.
In this case, we should use the σx eigenbasis e± := 1√

2
(e1 ± e2). The total Hamiltonian then

decomposes into a block diagonal matrix with blocks h± := x ± λy. It is possible to compute

t �→ 〈exp(ith+) exp(−ith−)〉 (7)

and in particular to show that

lim
t→∞〈eith+ e−ith−〉 = 0.



Qubits in a random environment 8077

ε
10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

ρ(∞)22

Figure 8. Asymptotic (22) entry versus ε, triangles obtained numerically, full line is theoretical
expectation.
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Figure 9. The expectation of exp(itH+) exp(−itH−).

When t → ∞, an initial density matrix

(
ρ11 ρ12

ρ21 ρ22

)
evolves into

( 1
2

ρ12+ρ21

2

ρ12+ρ21

2
1
2

)
, (8)

which is no longer diagonal in the σ z eigenbasis.
In figure 9, the absolute value of the random approximation of (7) is plotted for λ = 0.2,

while the small triangles in figure 10 show the real part of the off-diagonal matrix element of
the asymptotic state as a function of the initial condition. The continuous line is the analytic
expression (8).

3. Extended models

Up to now, we restricted our attention to the basic model introduced in (1) and further analysed
in section 2. Obviously, several relevant extensions can and should be considered. The simple
interaction in (1) satisfies a reality condition that cannot be expected to hold in general. A



8078 I Akhalwaya et al

(ρ0)12

−

−

−−

0.2

0.2

0.20.2

0.4

0.4

0.40.4

Reρ(∞)12

Figure 10. The off-diagonal part of the asymptotic density matrix.

more general Hamiltonian of the form

h =
(

ε + x λy + µiz

λy − µiz X

)

with x, y and z in free relation should be considered.
A more relevant situation from the point of view of quantum information arises when

the small system is composite, e.g. two qubits. Unlike the single qubit model, the notion of
entanglement is now viable and we are interested in investigating its dynamical behaviour.
We may expect that any entanglement should disappear as the qubits interact with the random
environment. Judging from the single qubit behaviour that we saw earlier this loss of
entanglement would occur because the random environment selects a preferred final mixed
state with the off-diagonal elements going to zero.

Several basic models can be envisaged. If the two qubits are sufficiently close to one
another they will interact in the same way with the environment and this can be modelled by
an interaction term in the Hamiltonian of the form

λ
(
σx

1 + σx
2

)
y. (9)

Here λ is a common coupling constant and σ1 and σ2 denote the Pauli matrices of the first and
the second qubit. If the qubits are not that close we should rather consider an interaction term
of the form

λ1σ
x
1 y1 + λ2σ

x
2 y2. (10)

In this expression λ1 and λ2 can be quite different and y1 and y2 are freely independent.
Establishing manageable quantitative criteria for the degree of entanglement of general

mixed many party states is still an open problem. Extending the simple and explicit
characterization for separability of a mixed two-qubit state that has been obtained by Wootters
[9] seems to offer a promising approach [10]. This kind of criterion goes under the name of
concurrence. The expression of the concurrence for a two-qubit state ρ is

C(ρ) := max{0, r1 − r2 − r3 − r4}.
Here rj are the eigenvalues in decreasing order of the matrix

√√
ρρ̃

√
ρ. The density matrix

ρ̃ is obtained by multiplying the complex conjugated matrix ρ in the standard tensor basis
on both sides with σy ⊗ σy . C(ρ) ranges from 0 for no entanglement to 1 for a maximally
entangled state.

Let us first display the concurrence in the case of the second model (10). Figure 11 shows
two plots of the concurrence for the case of different interactions. Both plots apply to all
of the Bell states which are initially maximally entangled. Here we see the behaviour is in
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Figure 11. Concurrence versus time with different environment interactions for both qubits (first:
same λ, second: has one interaction off).
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Figure 12. Concurrence versus time with the same environment interaction (one plot for each Bell
state).

accordance with our expectations. For the first plot we chose two different random matrices,
with the same coupling constant of λ1 = λ2 = 0.5. We can see that the concurrence quickly
goes to and remains zero. For the second plot we decided to actually switch one of the qubit
interactions off by setting λ1 = 0 and keeping the other constant at 0.5. It can be seen that
the qubits still fully decohere and all entanglement is lost. However note that the time taken
is longer.

For the case of the same interaction for both qubits (9) we have figure 12. There are four
plots, each corresponding to a different initial Bell state. Three of the setups tend to zero
with some interesting irregularities along the way. However, one setup, corresponding to the
Bell state: (|01〉 − 〈10|)/√2, exhibits no decoherence and entanglement is maintained at its
maximal level. This behaviour is due to symmetry reasons. As the Hamiltonian is invariant
under permutation of the qubits and as there is only one antisymmetric two-qubit state, such
a state will decouple from the environment and not evolve in time. This is somehow the most
elementary occurrence of a decoherence free subspace, see [11].
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